LEAF－SPRING RELEASE：Pitts＇electric clutches utilize a bi－directional flat spring design to assure perfect，friction－free alignment between the
disengaged pulley（rotor）assembly and the armature disc．With such leaf springs，dirt，rust or wear particles cannot bind or affect positive disengaged pulley（rotor）assembly and the armature disc．With
engagement．Disengagement of the clutch is assured without drag．
CLUTCH OPERATION：The stationary field coil（ 1 ）is mounted on the frame of the driven
unit，concentric with the straight shaft．The pulley，or rotor assembly，is bearing－mounted on unit，concentric with the straight shaft．The pulley，or rotor assembly，is bearing－mounted on
the driven shaft．It consists of a pulley or a rotor（ 2 ），a disc（3），and a hub（4）．The disc and
hub are flexibly connected by flat springs（5）．The springs prevent contact between the disc hub are flexibly connected by flat springs（5）．The
and the pulley（rotor）assembly when disengaged．
When electric current flows through the coil a magnetic field is created．The lines of magnetic force bridge the air gap between the stationary field and the rotating pulley（shown by
dashedel－ines．）．Continuing dashed－lines show the magnetic path which crosses back and
forth between the nuley web forth between the pulley web and the disc．The＂lines of force＂at four poless strongly atract the disc against the pulley web，creating a frictio
hub in to rotation with the pulley to drive the unit．
BURNISHING：Clutches may need a short burrishing period to generate the rated torque
This is a process of cycling the clutch to slightly wear the friction surfaces This allows full this is a process of cycling the clutch to slightly wear the friction surfaces．This allows ful burning or heat distortion，the following is recommended：
Install llutch and run at 1000 to 1200 RPM．Cycle on／off at the rate of 5 sec ．on -5 sec ．off
for a total of 25 cycles．
WATTAGE：Each clutch，within its model size，will have approximately the same wattage
dissipation，regardless of voltage rating．The following relationships may be used to dissipation，regardless of vo
determine electrical values：

## Wattage $=$ Voltage $\times$ Amperage

Voltage $=$ Amperage $\times$ Resistance


RESISTANCE：Note that electrical resistance builds up when temperature rises，A $40^{\circ} \mathrm{F}$ rise in the ambient（air）temperature will increase resistance approximately $9 \%$ ．Tests or applications in high temperature areas may induce clutch torque or engagement problems unless such resistance approximately
conditions are considered．

## HORSEPOWER TO DRIVE A PUMP

The standard formula for calculating hydraulic（fluid power）horsepower is HP $=$ PSI $\times$ GPM $/ 1714$ ．Most positive displacement hydraulic pumps have an efficiency range of $80 \%$ to $90 \%$ ．Figures．in the body of the tabbe below，show the horsepower needed tod drive a hydraulic pump having an
efficiency of $85 \%$ ．Therefore，this table is accurate to within $5 \%$ of nearly any hydraulic pump．The table below was calculated using this formula： HP＝PSI $\times$ GPM $/ 1456.9(1714 \times 85 \%$ efficiency $=1456.9$ ）．For pumps，with other than $85 \%$ efficiency，this formula can be used by substituting actual efficiency in place of .85 ．

USING THIS TABLE－The range of 500 to 5000 PSI covers nost hydraulic systems，but power requirements can b
determined for conditions outside the table，or for intermediat values，by combining values in the table．For example，power
at 4000 PSI will be exactly twice the figures shown for 2000
PSI．At 77 GPM power will be the sum of the figures shown in PSI．At 77 GPM ，power wil
the 75 and 2 GPM lines，etc
For systems of less than 500 PSI，horsepower calculations tend
to become inaccurate because mechanical friction losses
RULES－OF－THUMB－Approximate power requirements can be
RULES－OF－THUMB－Approximate power requirements can
figured with simple mental arithmetic with this rule－of－thumb．
1 HP is required for each 1 GPM＠ 1500 PSI For example，a 5 GPM pump operating at 150 PSI would need
5 HP or at 300 would need 10 HP．A 10 GPM pump at 1000
PSI SSI would need $6-2 / 3 \mathrm{HP}$ ，or the same pump operating at 150
PSI would need 10 HP ．etc．
Si woula need io HP, et

Another rule－of－thumb states that about $5 \%$ of the pump maximum rated horsepower is required to idle that pump when
is＂unloaded＂and the oil is circulating at zero PSI．Thi ts unloaded＂and the oil is circulating at zero PSI．This amount of power is consumed in flow losses plu
friction losses in bearings and pumping elements．

Figures in table are HP＇s required to drive a hydraulic pump．

|  |  |
| :---: | :---: |
|  |  |
|  | \％ata |
| ${ }_{6}{ }^{\text {an }}$ |  |
|  |  |
| 品品 |  |
| $\frac{12}{20}$ |  |
|  |  |
|  |  |
|  |  |
|  | 越旡 |
|  | ${ }^{2}$ |
|  |  |
|  |  |



## ＂H＂－SERIES

 HYDRAULIC PUMP CLUTCH INSTALLATION INSTRUCTIONSTHE FOLLOWING INSTALLATION INSTRUCTIONS AND SERVICE DATA IS FOR PITTS＇DIRECT SHAFT MAINTENANCE WI DIVEN ELECTROMAGNETC CLUTCHES．PROPER ASSE BXTENDED LLAFE PLEAS MAINTENANCE WILL ASSURE OPTIMAL APPLICATION PERFORMANCE AND EXTENDED LIFE．PLEASE READ THE APPROPRIATE SECTION PRIOR TO ASSEMBLY AND OPERATION．

A．DIRECT DRIVEN CLUTCH／BRACKET INSTALLATION

1．If the power driving source，such as vehicle engine，electric extended bumper or suitable frame work to support th pump／clutch assembly，this must be fabricated first．Most any method is acceptable as long as the platform will adequately
support the total weight of the pump／clutch／bracket assembly The mounting platform must also allow for close toleranc adjustment and alignment of the clutch center line to the power source shaft center line．This alignment must be within $3^{\circ}$ platform．
2．Mount the Pitts Clutch to the appropriate Pitts foot moun
bracket with the bolts provided and torque to specified limits．
3．Loosely position the clutch／bracket assembly on the previously alignment is very important－if necessary，use suitable shims alignment is very important－if necessary，use suitable shims
between the bracket and mounting plattorm．An alignment of zero degrees（ $0^{\circ}$ ）vertically and horizontally between clutch and
power source shaft center line is optimum．Do not exceed $3^{\circ}$
4．Drill required hoes in platform to correspond to the foot mount
．Drill required hoes in platform to correspond to the foot moun
bracket on the clutch．
5．Loosely install mount bracket bolts，nuts，and lock washers．Re－ check alignment（per ite，
Torque to specified limits．
6．Remove alignment tools and／or other devices used．
Mount pump to foot bracket on opposite side from clutch． NOTE：Lubrication and cleanliness of the pump shaft and clutch bore is important．
his portion of the assembly is now complete．Proceed to sectio
Thoroughly clean these areas of any contamination．Apply a thin bore．This will avoid installation interference，resist corrosion，and reduce friction wear．）
Use mounting bolts long enough to engage at least three－fourths of he threads in the mounting bracket．Do not use bolts that wi
ouch the clutch housing after tightening．Always use lock washers ouch the clutch housing after tightening．Always use lock washers
Clutches with keyways are provided with two Dorman plugs．When short shaft hydrautic pump is used，the smaller plug should be lapped into the clutch bore untiti it bottoms on the pump shaft．If
ong shaft hydraulic pump is used，then the larger plug should be ong shaft hydraulic pump is used，then the larger plug should be
istalled the same way．（NOTE：It is important to install the Dorman plug（s）．This keeps contamination out and prevents the haft key from moving outward．
Measure and select an appropriate sized universal drive line select a drive line that is adequately sized to accommodate the pump and overall application requirements．）See additional notes n each clutch model page in Pitts＇clutch catalog
Install drive line between clutch and power source．Install bolts，
nuts and lock washers．Torque to specified limits．（NOTE：Inspeat he drive line for proper phasing．This means the flange yoke ear on each end of the shaft must be directly in line．If not，remove and disassemble
fa speed control device is to be used，install per manufacturer＇s ＂C＂，final installation．

B．BELT DRIVEN CLUTCH／BRACKET INSTALLATION
Assemble the clutch，pump and bracket using bolts that will Aot bottom on the cum housing．（NOTE：Lubrication and Thoroughly clean these areas of any contamination．Apply hin coating of molybdenum disulfide grease on the shaft and in corrosion and reduce friction wear）．Clutches with keyways are provided with two Dorman plugs．When a short shaft hydraulic pump is used，the smaller plug should be tapped into the clutc
bore until it bottoms out on the pump shaft．If a long sha bore until it bottoms out on the pump shaft．If a long sta
hydralic pump is used，then the larger plug should be installed hydraulic pum the same way．
2．Mounting the pump／／lutch／bracket assembly may be vehicle engines various methods．You may find hat on som enicle engines there are existing available erackets and
engine location points whereby a simple fabricated bracket allow mounting the pump／clutch／bracket assembly with ease Others may require a more elaborate method to mo
assembly．An alternative to fabricating your own engine
mounting bracket is to use a commercially available，air－ fom most auto and truck air－conditioning warehouse supply centers n your area．
With a suitable mount／drive bracket in place and all necessary minor addiustments completed，you are now ready to install the pump／up and the shafts are parallel．This can be done by placing a straightedge against the outside edge of the be driver pulley and clutch pulley and moving clutch／pump／bracket until the straightedge
ouches two sides of both pulleys．Use extreme caution and touches two sides of both puleys．Use extreme caution and avoid
any possible interference with other accessory members and drive eetts．Stay clear of the radiator，fan，and hoood area．Misalignment
causes many problems，some of which are： auses many problems，some of which are：
STABILITY：Misaligned belts are subject to turnover or roll－off
OISE：Misaligned belts can create a noisy drive
that comes in contact with the pulley first on the side of the bet

LIFE: A significant degree of misalignment rapidly decreases bett life. MLLTLE BELT DRIVE: When necessary to use more than
one belt on a drive use a matched set of belts. If all of the belts are not of the same length, the shorter belt will operate unde
more tension than the longer one and their service life may more tension than the longer one and their service life may be
correspondingly shortened. Therefore, if a drive is designed to use more than one belt, order the belts in matched sets. Make
sure the matched set is of belts from the same manufacturer.
C. FINAL INSTALLATION INSTRUCTIONS FOR
A. DIRECT DRIVE CLUTCHES

Completely inspect the entire assembly and installation. Check and secure all
installation.
Proper very important. Locate a circuit controlled by the vehicle ignitio switch, if possible. This will prevent the clutch from being engaged hen the vehicle is not in use
The coil in the field assembly is continuous run wire. One end of the
wire is connected to positive wire in connected to positive ( + ). The other end onegative the
(ground). If the coil has only one lead wire protruding from the housing it will be connected to positive (+) as the other end is
internally grounded to to case. If two lead wires are protuding connect one to positive $(+)$ and one to negative $(-)$ (ground). Proper contch operation and clutch life relies on an adequate supply of rated
clutch $D>C>$ voltage to the field coil

LOW VOLTAGE = CLUTCH FAILURE
The wiring circuit may vary, depending upon whether or not a speed
control device is used in the system. This schematic illustrates a simple method of connecting the D.C. Circuitry


If belts of different manufacturers are used, the pitch line locatio and other construction features will not be the
result in the belts not operating propery together
Position the assembly so that the belts can be put on without force Although $V$-Belts are elastic, they are not rubber bands. Forcing limited belt life. Using a belt tensiometer, tighten belts to 100-110 lbs., per strand.
torque
In determining torque requirements for a given machine application, the

## Mechanical

## $T=\underline{5252 \times H P}$

 RPMWhere $\mathbf{T}=$ Torque (Pound Feet)
HP = HorsePower
RPM $=$ Speed (Revolutions Per Minute)

## Fluid Pow

$T=\frac{\mathrm{CIR} \mathrm{X} \mathrm{PSII}}{75.4}$
Where CIR $=\quad$ Cubic Inch per Revolution
PSI $=$ Pounds per Square Inch
STATIC TORQUE:
All references to torque capacity are in terms of static torque, the "break All references to torque capacity are in terms of static tora
away" torque required to slip a locked-up clutch or brake.
DYNAMIC TORQUE:
Dynamic torque is that applied during the period when the surfaces are sliding into engagement. As a percentage of static torque, dynamic torque varies with surface slip speed and is represented on the

ORQUE - HORSEPOWER - RPM RELATIONS

- What size clutch do you need for your application?
- Determine RPM of operation at the clutch.
- Determine Horsepower that clutch will drive.
- Determine clutch torque required by using the following formula or

To find Torque: use formula: $\mathbf{T}=$ (HP X 5252) / RPM

| HP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 500 | 750 | 1000 | 1200 | 1500 | 1800 | 2400 | 3000 |
| $1 / 4$ | 13.1 | 2.6 | 1.8 | 1.3 | 1.1 | 0.9 | 0.7 | 0.5 | 0.4 |
| 1/3 | 17.3 | 3.5 | 2.3 | 1.7 | 1.4 | 1.2 | 1 | 0.7 | 0.6 |
| 1/2 | 26.3 | 5.3 | 3.5 | 2.6 | 2.2 | 1.8 | 1.5 | 1.1 | 0.9 |
| $3 / 4$ | 39.4 | 7.9 | 5.3 | 3.9 | 3.3 | 2.6 | 2.2 | 1.6 | 1.3 |
| 1 | 52.5 | 10.5 | 7 | 5.3 | 4.4 | 3.5 | 2.9 | 2.2 | 1.8 |
| $11 / 2$ | 78.8 | 15.8 | 10.5 | 7.9 | ${ }^{6.6}$ | 5.3 | 4.4 | 3.3 | 2.6 |
| 2 | 105 | 21 | 14 | 10.5 | 8.8 | 7 | 5.8 | 4.4 | 3.5 |
| 3 | 157.6 | 31.5 | 21 | 15.8 | 13.1 | 10.5 | 8.8 | 6.6 | 5.3 |
| 5 | 262.6 | 52.5 | 35 | 26.3 | 21.9 | 17.5 | 14.6 | 10.9 |  |
| $71 / 2$ | 393.9 | 78.8 | 52.5 | 39.4 | 32.8 | 26.3 | 21.9 | 16.4 | 13.1 |
| 10 | 525.2 | 105 | 70 | 52.5 | 43.8 | 5 | 29.2 | 21.9 | 17.5 |
| 15 | 788 | 158 | 105 | 78.8 | 65.7 | 52.5 | 43.8 | 32.8 | 26.3 |
| 20 | 1,050 | 210 | 140 | 105 | 87.5 | 70.0 | 58.4 | 43.8 | 35.0 |
| 25 | 1,313 | 263 | 175 | 131 | 109 | 87.5 | 72.9 | 54.7 | 43.8 |
| 30 | 1,576 | 315 | 210 | 158 | 131 | 105 | 87.5 | 65.7 | 52.5 |
| 40 | 2,101 | 420 | 280 | 210 | 175 | 140 | 117 | 87.5 | 70.0 |
| 50 | 2,626 | 525 | 350 | 263 | 219 | 175 | 146 | 109 | 87.5 |
| 60 | 3,151 | 630 | 420 | 315 | 263 | 210 | 175 | 131 | 105 |
| 75 | 3,939 | 788 | 525 | 394 | ${ }^{328}$ | 263 | 219 | 164 | 131 |
| 100 | 5,252 | 1,050 | 700 | 525 | 438 | 350 | 292 | 219 | 175 |
| 125 | 6,565 | 1,313 | 875 | 657 | 547 | 438 | 365 | 274 | 219 |
| 150 | 7,878 | 1,576 | 1,050 | 788 | 657 | 525 | 438 | 328 | 263 |
| 200 | 10,504 | 2,101 | 1,401 | 1,050 | 875 | 700 | 584 | 438 | 350 |
| 250 | 13,130 | 2,626 | 1,751 | 1,313 | 1,094 | 875 | 729 | 547 |  |

- To find Horsepower: use formula HP =(T×RPM)/5252 To find RPM Use formula RPM $=($ HP X 5252 $) / T$

Important: When the system installation is complete, mechanically
and electrically, and the pump/clutch can be operated a functiona check is necessary. With the power source running at 1,000 to
1,200 RPM. .ycle the Clutch onlof at for a total of 25 cycles. The armature plate should "Snap" firmly against the rotor. If not, re-check for rated voltage at the lead wire
and check for proper grounding. and check for proper grounding,
The Pitts Clutch automatically compensates for wear requiring no
adjustment throughout the life of the clutch. DO NOT lubricate the unit. If the clutch should fail to operate, check the electrical circuit to be sure that the proper voltage is being supplied to the clutctc. D
NOT attempt to make any mechanical adjustments on the clutch.
CAUTION: At the moment of engagement the clutch mut piction CAUIION: At the moment of engagement, the clutch must pickup
all related inertia load of the clutch components and other components being put into rotary motion. This action is correlated
to dynamic torque. The larger the clutch and related components to dynamic torque. Tie larger the clutch and related component
the higher the inertia load. High RPM Engagement of the clutch creates an excessive shock load and may cause breakage of the leaf springs and/or clutch sliopage and ultimate clutch failure. On
direct drive clutches the input drive shatt may also breik causing direct drive clutches the input drive shaft may also break causing
excessive damage to surrounding area. Please refer to these lutch mode H24 H27 H28 H36 H49 $\begin{array}{lllllll}2500 & 1800 & 1500 & 1200 & 1200 & 1200\end{array}$ CONCLUSION:
Satisfactory performance and life expectance of your clutch drive system

- MATCHED COMPONENTS: Pump/Clutch/Brackets and Drive

Line equally sized to handle the job.

- ALIGNMENT: Direct Drive Lines within $3^{\circ}\left(0^{\circ}\right.$ is optimum). Belt Drives within $1 / 8^{\prime \prime}$ (Pulley to Pulley).
NO LEAKS: Hydraulic Fluid, oil and contamination in and around
clutch friction surfaces and bearings equals "shont iffe"
ELECTRICAL. Full re
ELECTRICAL: Full rated D.C. Voltage must be applied to coil. A
loss of 1 volt, on a 12 volt system, equals $9 \%$ less torque.
- SCHEDULED MAINTENANCE: Inspect the entire drive system periodically for proper operation.
- Meriodically for proper operation.
sign RPM ENGAGMENT: Refer to item 5 (above). Use caution
she operator.


## PERFORMANCE ASSURANCE

The performance of a PITTS electro-magnetic clutch depends upon the proper application of the product, adequate run-in, installation and maintenance onable care in operation of the unit.
All torque values listed in our literature are nominal and are subject to the variations normally associated with friction devices. Adequate and reasonable
service factors must be applied when selecting units. Although PITTS' application engineers are available for consultation final selection and performance assurance on the buyer's application is the responsibility of the purchaser. The buyer should take into consideration all variables shown in he applicable specification sheet. Careful selection, adequate testing, and proper operation and maintenance of all PITTS' products should aid in obtaining the best possible performance.


When actual clutch torque is determined for your application, a service factor (or K-factor) must be added to this value. This $K$-factor is spikes and/or high RPM engagement shock load to the clutch. Multiply actual torque value

For light machines such as driling, where load is $K=1 / \frac{1}{2}$ to $2 \frac{1}{2}$ applied after clutch is engaged.
$K=2$ to 3 For electric motors where (during overloads) clutch stalls the motor, use pullout
from motor catalog, or approximately

| For engines where clutch should be strong |
| :--- |
| enough to stall engine. |
| $\mathbf{K}=\mathbf{2}$ to $\mathbf{4}$ | enough to stall engine.

For refrigerant and air compressors

| For hydraulic pumps where pressure may be on | $\mathrm{K}=\mathbf{2}$ to $\mathbf{~}=\mathbf{2 1 / 2}$ to 5 |
| :--- | :--- | | the system at instant of engagement. |  |
| :--- | :--- |
| Conveyors and augers, where static load on | $\mathrm{K}=3$ to 5 | system must be started by slipping torque of the

The resulting torque requirement, $\mathrm{K} \times \mathrm{T}=$ Required Torque of clutch
EXAMPLE: Known: 25 HP Hydraulic pump load at 1800 RPM An occasional pressure spike may occur and the pump will be in the max
pressure or by-pass condition. $\mathrm{K}=3$ is selected. From the chart at left, 25 HP At 1800 RPM Calls for 73 lb . ft. or Torque. $T=73$. Then, $\mathrm{K} \times \mathrm{T}=$ 219. We would therefore rec
"high torque" rated at 200 lb ft.

## PITTS

PITTS INDUSTRIES, LLC
1220 Champion Circle
Carrollton, Texas (USA) 75006
972.247 .2971 p | 972.247 .4516 www.pittsindustries.com

# INSTALLATION AND REMOVAL INSTRUCTIONS <br> PITTS' ELECTRO-MAGNETIC CLUTCH <br> The following instructions are for Pitts' 2-piece clutch with stationary mounted coil and belt driven pulley assembly. 

I. Stationary Mounted Coil: (Outboard 4-hole or Inboard 3-hole Mount)
A. Be sure that rated DC voltage of coil is same as DC voltage from supply source.
B. Attach coil to mounting surface using "special" 1/4"-20 hex head screws in parts package supplied with clutch.
C. Torque $1 / 4 "-20$ supplied screws to $13-17 \mathrm{lb} . \mathrm{ft}$. (consult with manufacturer if other screws are used.)

Note: Coil must be concentric to shaft on driven device within 0.015 TIR (Total Indicator Runout). Coil face clearance to pulley cavity face must be $3 / 32$ inch.
II. Pulley Assembly: (Tapered or Straight Bore Hub)
A. Thoroughly clean the shaft of driven unit.
B. Check shaft key for proper size and location in shaft keyway.
C. Slide pulley assembly onto shaft. Be sure that clutch hub keyway aligns with shaft key and that shaft key is properly seated and located after pulley installation.
D. Secure pulley assembly in proper location on shaft using $5 / 16$ inch Nylock cap screw and flat washer supplied in parts package or by using other suitable attachments. (Recommended torque for $5 / 16$ inch supplied cap screw is 20 ft -lbs.)
E. Hand spin the pulley and watch for any excessive runout or rubbing interference with the coil or mounting bracket areas. Correct any such problems to operation of clutch assembly.
III. Electrical Connection: (1 or 2 Lead Wire Coils)
A. Connect coil lead wire to DC electrical circuit.

Note: If coil has only one lead wire, the coil is internally grounded through the mounting hardware. If the coil has two lead wires, one wire is to be connected to DC electrical circuit and the other to an external grounding point.
B. Apply rated DC voltage to the coil to engage the clutch. Engage and disengage several times. The disc should "snap" firmly against the pulley face during engagement. If not, check DC voltage circuit and correct as required

## IV. Removal:

A. Remove shaft bolt or other attaching devices from pulley.
B. * Taper Bore Hub - Install $5 / 8$ inch NC (coarse thread) bolt into corresponding threads in front of hub. Turn bolt against shaft and pulley will be forced free.

* Straight Bore Hub - The pulley may slide freely off shaft by hand applied force. If not, use a suitable pulley puller tool.


## V. Operation of Clutch:

A. When clutch is ready for functional operation and with drive belts properly installed, start the driving power source (engine, motor, etc.)
B. Observe that all mounting hardware is secured and drive belts are in line and turning properly.
C. Apply rated DC voltage to the coil to engage clutch. Repeatedly engage and disengage the clutch approximately 15-20 times. This procedure will "burnish in" the mating friction surfaces and allow the clutch to yield higher initial torque.

## VI. Performance Assurance:

The performance of a Pitts' electro-magnetic clutch depends upon the proper application of the product adequate run-in, installation and maintenance procedures, and reasonable care in operation of the unit.
All torque values listed in our literature are nominal and are subject to the variations normally associated with friction devices. Adequate and reasonable service factors must be applied when selecting units. Although Pitts' application engineers are available for consultation, final selection and performance assurance on the buyer's application is the responsibility of the purchaser. The buyer should take into consideration all variables shown in the applicable specification sheet. Careful selection, adequate testing, and proper operation and maintenance of all Pitts' products should aid in obtaining the best possible performance.

PITTS INDUSTRIES, LLC
1220 Champion Circle
Carrollton, Texas (USA) 75006
972.247.2971 p | 972.247.4516 f
www.pittsindustries.com

## HOW TO AVOID CLUTCH PROBLEMS

What are typical application problems that cause clutch failures? Clutch slippage is the most common complaint, but it's not always readily obvious why the clutch slips. Low voltage and erratic torque demands are probably the most troublesome. Unfortunately, these can both be present at the same time.

When a clutch is removed from the application and set aside for examination, many of the clues to the cause of failure are lost. The best way to analyze a clutch failure is before the clutch is removed from the application as this will often reveal the true cause of failure. Nevertheless, we have experienced enough failure modes over the years to establish a pattern of these "failed clutches".
Two things happen in these cases: (1) The clutch torque decreases due to application problems; or (2) the application load increases. A normal clutch has more than the required torque capacity to drive an approved application under high load conditions. A normal clutch is one operating with full rated voltage on an approved application (i.e., pump or compressor) in a fairly clean environment. The normal pump does not purge oil onto the clutch face or operate over the manufacturer's rated pressures. Now, these severe conditions can become more severe. The voltage source can decrease; the ambient temperature increase; etc. Even then, it is unlikely that a clutch would slip because of the built in safety factor.

We find that a combination of severe conditions may be superimposed. Consider the following: low voltage - a loss of 1 volt on a 12 volt unit will drop torque 9\%; 2 volts may cause partial engagement and drag. High ambient temperature - a $50^{\circ} \mathrm{F}$ increase in temperature may drop torque $10 \%$. A new clutch, before being cycled-in has $1 / 3$ less torque than after it is cycled.
More unusual causes, but nevertheless serious are these: (1) Poor grounding of the clutch coil; (2) Oil from a pump or hose leak can reduce the friction drastically; (3) Severe contamination can destroy bearings and cause high friction heat and slippage; (4) Bearing failures can also be caused from excessive belt tension and misalignment or from brinelling upon forced installation to the shaft.
Many coil failures are really a result of extensive clutch slippage transferring heat to the coil face thus burning the potting compound and coil winding. If the coil is not mounted concentric to the shaft, interference will result in failure. When a shaft locks up, the clutch is forced to slip. This cause of failure is hard to analyze except by the technician who replaces both assemblies. A service report with the clutch can help in analyzing the conditions.

## TROUBLESHOOTING

Some tips that will help the technician diagnose or prevent problems:

1. One tool we recommend be available, and used regularly, is a good DC volt-ohmmeter. Check the clutch voltage at the coil wire connection when the system is operating along with all other lights and accessories operating. The clutch coil must be supplied with required rated voltage. Equally as important is grounding of the clutch coil. Check this circuit as well, to assure full complete grounding.
2. When installing a clutch, be sure it seats on the shaft and key. Use a torque wrench to properly torque the field coil and shaft bolts as specified.
3. Belt tension: Drive belts that are too loose or too tight can cause a variety of problems. Use a belt tension gauge to set or adjust belt tension.
4. Cycle a new clutch as much as practical after installation (1000-1500 RPM - 5 sec on/5 sec off - 25 cycles). This increases the torque greatly.
5. The cause of rubbing of the pulley on the coil is often loose coil screws. Elongated holes, broken coil tabs, etc., may be the result of loose screws. These must be torqued as specified.

## REVIEW OF POTENTIAL PROBLEMS

- Low voltage to coil.
- Inadequate coil grounding.
- Compressor seal leak.
- Clutch mounted incorrectly.
- Mounting bolts not torqued.
- Malfunction of other system components.
- Excessive engine vibration.
- Excessive ambient temperature.
- Belt tension-too high/low.

In conclusion, please remember that things are not always as they first appear and just because a failure has occurred, does not always justify blaming the part that failed.

## 24D75-6 CLUTCH

## Hydraulic Pump Drive 12 or 24 Volt D.C. - Belt Driven



Static Rated Torque-75 Lbs. Ft.

| Type "A" Mount (Inboard) |  | Type "B" Mount (Outboard) |  | Italicized P/N = Minimum Qty Per Order - 200 PCS Bold P/N = Normally Stocked P/N 1137850 has Poly Groove Pulley |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24V | 12V | 24V | 12V |  |  |  |  |  |  |  |
| Part No. | Part No. | Part No. | Part No. | A | B | C | D | E <br> Gage | F <br> Spacing | No of Grooves |
| 1100080 | 1072380 | 1102040 | 1075310 | 6.00 | 0.50 | $36^{\circ}$ | 0.50 | 0.192 | 0.62 | 2 |
| N/A | N/A | 1080150 | 1075510 | 6.00 | 0.50 | $36^{\circ}$ | 0.60 | 0.192 | 0.62 | 2 |
| N/A | N/A | 1111190 | 1100650 | 6.00 | 0.60 | $38^{\circ}$ | 0.52 | 0.500 |  | 1 |
| N/A | 1104190 | 1102130 | 1102000 | 6.00 | 0.38 | $36^{\circ}$ | 0.36 | 0.155 | 0.56 | 2 |
| N/A | N/A | 1120700 | 1111910 | 6.00 | 0.60 | $38^{\circ}$ | 0.52 | 0.230 |  | 1 |
| N/A | N/A | N/A | 1137850 | 5.80 | 0.14 | $40^{\circ}$ | 0.14 | 0.504 | 0.14 | 6 |

## 24D75-6 CLUTCH

## Mounting Dimensions



## 28A75-7 CLUTCH

## Taper Bore Hydraulic Pump Drive <br> 12 or 24 Volt D.C. - Belt Driven

## Power 48 Watts

## Max RPM <br> 5000

## Weight 11 Lbs.



## Static Rated Torque - 75 Lbs. Ft.

| Type "A" Mount (Inboard) |  | Type "B" Mount (Outboard) |  | Note: <br> P/N 1138320 has Poly Groove Pulley |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24V | 12V | 24V | 12V |  |  |  |  |  |  |  |
| Part No. | Part No. | Part <br> No. | Part No. | A | B | C | D | E <br> Gage | F <br> Spacing | No of Grooves |
| 1102330 | 1070790 | 1102230 | 1075340 | 7.00 | 0.50 | $36^{\circ}$ | 0.50 | 0.192 | 0.62 | 2 |
| N/A | N/A | N/A | 1138320 | 6.80 | 0.14 | $40^{\circ}$ | 0.14 | 0.504 | 0.14 | 6 |

## 28A75-7 CLUTCH

Mounting Dimensions


## 28A75-7HT CLUTCH

# Taper Bore High-Torque Hydraulic Pump Drive 12 or 24 Volt D.C. - Belt Driven 

## Power 48 Watts

Max RPM<br>5000



Weight 11 Lbs.


Static Rated Torque - 120 Lbs. Ft.


I $\mathbf{N}$
D U S T R I E S ,
L L C

## AG100 CLUTCH

# Heavy Duty Hydraulic Pump Drive Taper Bore - 12 Volt D.C. - Belt Driven 

## Power <br> 48 Watts

## Max RPM <br> 5000

Weight 11 Lbs.


Static Rated Torque - 100 Lbs. Ft.

| Single <br> Leadwire <br> Part No. | Double <br> Leadwire <br> Part No. | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | No of <br> Grooves |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1141930 | N/A | 6.700 | 0.500 | $36^{\circ}$ | 0.500 | 0.192 | 0.620 | 1.650 | 2 |
| 1141940 | 1145650 | 5.800 | 0.140 | $40^{\circ}$ | 0.140 | 0.581 | 0.140 | 1.650 | 6 |
| 1141950 | $\mathrm{~N} / \mathrm{A}$ | 5.308 | 0.140 | $40^{\circ}$ | 0.140 | 0.442 | 0.140 | 1.650 | 8 |
| 1141960 | $\mathrm{~N} / \mathrm{A}$ | 6.300 | 0.597 | $36^{\circ}$ | 0.552 | 1.250 |  | 2.000 | 1 |
| 1142610 | 1144370 | 6.000 | 0.500 | $36^{\circ}$ | 0.500 | 0.192 | 0.620 | 1.650 | 2 |
| 1142620 | 1145330 | 6.000 | 0.500 | $36^{\circ}$ | 0.440 | 1.250 |  | 2.000 | 1 |
| 1143040 | 1144320 | 5.800 | 0.140 | $40^{\circ}$ | 0.140 | 0.861 | 0.140 | 1.650 | 6 |
| 1144440 | 1143720 | 6.115 | 0.140 | $40^{\circ}$ | 0.140 | 0.441 | 0.140 | 1.650 | 8 |
| 1144650 | $\mathrm{~N} / \mathrm{A}$ | 5.308 | 0.140 | $40^{\circ}$ | 0.140 | 0.581 | 0.140 | 1.650 | 6 |

I $\mathbf{N}$
D U S T R I E S ,
L L C
"The Clutch People"

## AG100L BRAKE

Heavy Duty Hydraulic Pump Brake 24 Volt D.C. - Shaft Driven

Power 48 Watts

Max RPM
5000


Weight 11 Lbs.

Static Rated Torque - 100 Lbs. Ft.

| 24 Volt Brake <br> Part No. | 12 Volt Brake <br> Part No. | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1145900 | N/A | N/A | Special | N/A |

## AG100L BRAKE

## Mounting Dimensions



## Note:

- Brake is designed for aviation applications using special customer supplied hub.
"The Clutch People"
I $\mathbf{N}$
D U S T R I E S ,
L L C
P. O. Box $815968 \cdot$ Dallas, Texas • 75381-5968 • (U.S.A.)

Telephone: (972) 247-2971 • FAX (972) 247-4516

## AG100P CLUTCH

Heavy Duty Hydraulic Pump Clutch Taper Bore - $\mathbf{1 2}$ or 24 Volt - Belt Driven

## Power <br> 48 Watts



Max RPM
5000

Weight 11 Lbs.


## Static Rated Torque - 100 Lbs. Ft.

| 24 Volt Clutch | 12 Volt Clutch <br> Part No. | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1146920 | 1146910 | Taper Bore | Type "A" | N/A |

$\frac{\text { P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.) }}{\text { Telephone: (972) 247-2971 • FAX (972) 247-4516 }}$

# Model B-H21 <br> Clutch Mounting Bracket 

 .38 (3/8) DIA ON A 3.25 DBC

| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1131960 | H21 Series Clutches | 3 Lbs. |

I N
D U S T R I E S ,
L L C

## Model B-H24-H27

Clutch Mounting Bracket


PATENT NO. 4601378

| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1131950 | H24 \& H27 Series Clutches | 4 Lbs. |

"The Clutch People"

# Model B-H28 <br> Clutch Mounting Bracket 



| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1132190 | H28 Series Clutches | 9 Lbs. |

# Model B-H36-H49-B <br> Clutch Mounting Bracket SAE "B" 2-4 Bolt 



PATENT NO. 4601378

| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1132580 | H 36 H 44 H 49 Series Clutches | 21 Lbs. |

I $\mathbf{N}$
D U S T R I E S ,
L L C
Made in
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.) the USA

## Model B-H36-H49-C <br> Clutch Mounting Bracket <br> SAE "C" 2-4 Bolt



| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1132560 | H 36 H 44 H 49 Series Clutches | 21 Lbs. |

"The Clutch People"

# Model B-H55 <br> Clutch Mounting Bracket <br> SAE "D" 2-4 Bolt 



PATENT NO. 4601378

| Pitts Bracket <br> Part No | Used On | Weight |
| :---: | :---: | :---: |
| 1142190 | H55 Series Clutches | 48 Lbs. |

"The Clutch People"
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)

Telephone: (972) 247-2971 • FAX (972) 247-4516

## C28V80-20 CLUTCH

## "CAT" High Pressure Pump Drive 12 Volt D.C. - V-Belt Driven - 1/2" Wide Belts

## Power <br> 48 Watts

Max RPM
5000

Weight
10 Lbs.


Static Rated Torque - 80 Lbs. Ft.

| Pitts Clutch <br> Part No | For Pump Shaft Size <br> ("CAT" Water Pump) | CAT Pump <br> Model |
| :---: | :---: | :---: |
| 1137600 | 20 MM Straight Keyed for <br> 6 MM Wide $\times 6$ MM High Key | 310 and 340 |

"The Clutch People"

## C28V80-24 CLUTCH

"CAT" High Pressure Pump Drive 12 Volt D.C. - V-Belt Driven - 1/2" Wide Belts


## Power <br> 48 Watts

Max RPM
5000

Weight
10 Lbs.


Static Rated Torque - 80 Lbs. Ft.

| Pitts Clutch <br> Part No | For Pump Shaft Size <br> ("CAT" Water Pump) | CAT Pump <br> Model |
| :---: | :---: | :---: |
| 1137610 | 24 MM Straight Keyed for <br> 8 MM Wide X 7 MM High Key | 530 |

"The Clutch People"
I N D U S T T R I E S , L L C

## H24D90 CLUTCH

## Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven

## Power 48 Watts

## Max RPM <br> 3600

Weight 20 Lbs.


US Patent No. 4601378
Static Rated Torque - 90 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1143440 | 1137500 | $3 / 4$ " - With 3/16" Keyway | "A" 2 Bolt | 1131950 |

"The Clutch People"
I N D U S T T R I E S , L L C

## H24V90 CLUTCH

## Hydraulic Pump Drive

12 or 24 Volt D.C. - V-Belt Driven - 1/2" Wide Belts

## Power <br> 48 Watts

Max RPM
5000
Weight
14 Lbs.


US Patent No. 4601378
Static Rated Torque-90 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| N/A | 1131570 | $5 / 8$ " - With 5/32" Keyway | "A" 2 Bolt | 1131950 |
| N/A | 1132290 | "A" Spline 9T 16/32 DP | "A" 2 Bolt |  |
| 1138170 | 1132330 | $3 / 4$ " - With 3/16" Keyway | "A" 2 Bolt |  |
| N/A | 1138180 | $3 / 4 "-$ With 3/16" Keyway | or |  |

P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)

H24V90HMS CLUTCH PERFORMANCE ONLY

Hydraulic Pump Drive 24 Volt D.C. - Belt Driven - 6K Poly-V

Power<br>48 Watts

Max RPM
5000

Weight
14 Lbs.


US Patent No. 4601378
Static Rated Torque - 90 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1146810 | N/A | Taper Bore, $1.5 / / \mathrm{Ft}$ | "A" 2 Bolt | N/A |

## H27V150 CLUTCH

## Hydraulic Pump Drive

12 or 24 Volt D.C. - Belt Driven - Power Band "B" Belt

Power<br>60 Watts

Max RPM
3600

Weight 24 Lbs.


US Patent No. 4601378
Static Rated Torque - 150 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1142750 | 1136660 | $3 / 4$ " - With $3 / 16$ " Keyway | "A" 2 Bolt | 1131950 <br> or <br> 1137280 |

"The Clutch People"
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)

## H28D200 CLUTCH

## Hydraulic Pump Drive <br> 12 or 24 Volt D.C. - Shaft Driven

## Power <br> 72 Watts

Max RPM
3600

Weight 30 Lbs.


US Patent No. 4601378
Static Rated Torque - 200 Lbs. Ft.
Inertia: Rotor Assy. $.39{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{2}$
Armature Assy.
$.18{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{2}$

| 24 Volt Clutch Part No. | 12 Volt Clutch Part No | For Pump Shaft Size | For Pump Mount Style | Pitts Mount Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1138140 | 1133940 | "B" Spline 13T 16/32 DP | "B" 2 or 4 Bolt | 1132191 |
| N/A | 1133950 | 7/8" - With 1/4" Keyway | "B" 2 or 4 Bolt |  |
| N/A | 1133960 | 1" - With 1/4" Keyway | "B" 2 or 4 Bolt |  |

"The Clutch People"
I N D U S T R I I E S ,
L L C
x
Made in
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)

Telephone: (972) 247-2971 • FAX (972) 247-4516

## H28D200 CLUTCH <br> Mounting Dimensions

## Front View

## Rear View



## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1280 - 1310 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.

I N
D U S T R I E S
L L C
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)

## H28D200G CLUTCH

## Hydraulic Pump Drive, (Gresen TC) 12 or 24 Volt D.C. - Shaft Driven

Power
72 Watts

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1280-1310 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
Max RPM Weight 30 Lbs.

US Patent No. 4601378
Static Rated Torque - 200 Lbs. Ft.
Inertia: Rotor Assy.
$39 \mathrm{Lb} . \mathrm{Ft}^{2}$
Armature Assy
$.18{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{\text { }}$

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1138980 | 1134180 | 1" Straight Keyed -1/4" Keyway | "A" 6 Bolt | 1132190 |



## H28D300HT CLUTCH <br> Hydraulic Pump Drive <br> 12 or 24 Volt D.C. - Shaft Driven

## Power <br> 72 Watts

Max RPM
3600

Weight 30 Lbs.


US Patent No. 4601378
Static Rated Torque - $\mathbf{3 0 0}$ Lbs. Ft.
Inertia: Rotor Assy. $.39{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{2}$
Armature Assy. $.18{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{2}$

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147290 | 1147280 | "B" Spline 13T 16/32 DP | "B" 2 or 4 Bolt | 1132191 |

I $\mathbf{N}$
R I E S ,
L L C

## H28D300HT CLUTCH <br> Mounting Dimensions

## Front View

Rear View


## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type $1280-1310$ series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People"


## H28L200M BRAKE

Mil-Spec Hydraulic Pump Brake 24 Volt D.C. - Shaft Driven

Power
59 Watts

Max RPM
3600

Weight 28 Lbs.


Static Rated Torque - 200 Lbs. Ft.

| 24 Volt Brake <br> Part No. | 12 Volt Brake <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1146871 | N/A | N/A | Special | N/A |

# PITTS 

"The Clutch People"

## H28L200M BRAKE <br> Mounting Dimensions



Note:

- Brake is designed for mil-spec aviation applications using special customer supplied hub.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People" Telephone: (972) 247-2971 • FAX (972) 247-4516


## H28V200 CLUTCH

## Hydraulic Pump Drive

12 or $\mathbf{2 4}$ Volt D.C. - V-Belt Driven - 5/8" Wide Belts

Power<br>72 Watts

Max RPM
3600
Weight 30 Lbs.


US Patent No. 4601378
Static Rated Torque - 200 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1137300 | 1132440 | 1" - With 1/4" Keyway | "B" 2 or 4 Bolt | 1132190 |
| 1136540 | 1132450 | "B" Spline 13T 16/32 DP | "B" 2 or 4 Bolt |  |
| 1140460 | 1132460 | $7 / 8$ " With 1/4" Keyway | "B" 2 or 4 Bolt |  |

I N D U S T R I E S ,
L L C

## GRESEN PUMP ONLY

## H28V200G CLUTCH

## Hydraulic Pump Drive

12 or 24 Volt D.C. - V-Belt Driven - 5/8" Wide Belts

Power<br>72 Watts

Max RPM
3600
Weight 30 Lbs.


US Patent No. 4601378
Static Rated Torque - 200 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1135000 | 1134030 | $1 "-$ With 1/4" Keyway | "A" 6 Bolt | 1132190 |

"The Clutch People"
 ONLY

## H28V200MP CLUTCH

Hydraulic Pump Drive

12 Volt D.C. - V-Belt Driven - 5/8" Wide Belts

Power
72 Watts

Max RPM
3600

Weight
30 Lbs.


US Patent No. 4601378
Static Rated Torque - 200 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| N/A | 1146990 | $1.5 " /$ Ft Taper Bore (Special) | "B" 2 or 4 Bolt | $1147030^{*}$ |

*Special Pitts Mount Bracket 1147030 Required

## H28V300HT CLUTCH

Hydraulic Pump Drive
12 or 24 Volt D.C. - V-Belt Driven - 5/8" Wide Belts

Power
72 Watts

Max RPM
3600

Weight 30 Lbs.


US Patent No. 4601378
Static Rated Torque - 300 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147310 | 1147300 | "B" Spline 13T 16/32 DP | "B" 2 or 4 Bolt | 1132190 |

"The Clutch People"

## H28W200 CLUTCH

Hydraulic Pump Drive 12 Volt D.C. - Shaft Driven

Power
59 Watts

Max RPM
3600

Weight 25 Lbs.

Static Rated Torque - 200 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| N/A | 1146240 | Taper Bore, 3.0"/Ft | Type "B" Mount | 1132190 |



Telephone: (972) 247-2971 • FAX (972) 247-4516

## H28W200 CLUTCH <br> Mounting Dimensions

## Front View

Rear View



## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1280 1310 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.


Telephone: (972) 247-2971 • FAX (972) 247-4516

## H28W200 CLUTCH <br> Mounting Dimensions

## Front View

Rear View



## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1280 1310 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People"


## H36D400 CLUTCH

## Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven

## Power <br> 91 Watts

Max RPM
3600

Weight
44 Lbs.


US Patent No. 4601378
Static Rated Torque - 400 Lbs. Ft.
Inertia: Rotor Assy
$.79 \mathrm{Lb} . \mathrm{Ft}^{2}{ }^{2}$
Armature Assy
$.48 \mathrm{Lb} . \mathrm{Ft}^{2}$

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1138560 | 1133780 | "C" Splined 1-1/4" 14T 12/24 DP | "C" 2-4 | 1132560 |
| 1137980 | 1135380 | "C" -1-1/4" With 6/16" Keyway | "C" 2-4 |  |
| 1138590 | 1135890 | "B" Splined 7/8" 13T 16/32 DP | "B" 2-4 | 1132580 |

"The Clutch People"

## H36D400 CLUTCH <br> Mounting Dimensions




US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1350-1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.


# H36D550HT CLUTCH <br> Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven 

Power
91 Watts

Max RPM
3600

Weight
44 Lbs.


US Patent No. 4601378
Static Rated Torque - 550 Lbs. Ft.

Inertia: Rotor Assy..................
Armature Assy.............
.79 Lb. Ft. ${ }^{2}$
. 48 Lb. Ft. ${ }^{2}$

| 24 Volt Clutch | 12 Volt Clutch <br> Part No. | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147330 | 1147320 | "C" Splined 1-1/4" 14T 12/24 DP | "C" $2-4$ | 1132560 |

I N D U S T R I E S ,
L L C

## H36D550HT CLUTCH <br> Mounting Dimensions



US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1350-1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.


## H44D700 CLUTCH

Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven

## Power <br> 91 Watts

Weight 45 Lbs.


US Patent No. 4601378
Static Rated Torque - 750 Lbs. Ft.

| Inertia: | Rotor Assy............... | $1.83 \mathrm{Lb} . \mathrm{Ft.}^{2}$ |
| :--- | :--- | :--- |
|  | Armature Assy........... | $.92 \mathrm{Lb} . \mathrm{Ft.}^{2}$ |


| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1140930 | 1140940 | "C" Splined 1-1/4" 14T 12/24 DP | "C" 2-4 | 1132560 |
|  |  |  | "B" 2-4 | 1132580 |

# H44D700 CLUTCH <br> Mounting Dimensions 



US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1350-1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People"


## H44D850HT CLUTCH

Hydraulic Pump Drive
12 or 24 Volt D.C. - Shaft Driven

## Power <br> 91 Watts

Weight 45 Lbs.


US Patent No. 4601378
Static Rated Torque - 850 Lbs. Ft.

| Inertia: | Rotor Assy.................. | $1.83 \mathrm{Lb} . \mathrm{Ft.}^{2}{ }^{2}$ |
| :---: | :---: | :--- |
|  | Armature Assy............ | $.92 \mathrm{Lb} . \mathrm{Ft.}^{2}$ |


| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147350 | 1147340 | "C" Splined 1-1/4" 14T 12/24 DP | "C" 2-4 | 1132560 |
|  |  |  | "B" 2-4 | 1132580 |

## H44D850HT CLUTCH <br> Mounting Dimensions



US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1350-1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People"


# H49D1000 CLUTCH 

Hydraulic Pump Drive
12 or 24 Volt D.C. - Shaft Driven

## Power <br> 91 Watts

Max RPM
3000

Weight 76 Lbs.


US Patent No. 4601378
Static Rated Torque - 1000 Lbs. Ft.

Inertia: | Rotor Assy................... | $2.76 \mathrm{Lb} . \mathrm{Ft.}^{2}$ |
| :---: | :---: |
|  | Armature Assy........... |
|  | $1.88 \mathrm{Lb} . \mathrm{Ft.}^{2}$ |

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1139020 | 1136350 | "C" Splined 1-1/4" 14T 12/24 DP | "C" 2-4 | 1132560 |
| 1141440 | 1135570 | "C" 1-1/4" With 5/16" Keyway | "B" 2-4 | 1132580 |

"The Clutch People"

## H49D1000 CLUTCH

Mounting Dimensions


Rear View


US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.


# H49D1200HT CLUTCH <br> Hydraulic Pump Drive <br> 12 or 24 Volt D.C. - Shaft Driven 

## Power

91 Watts

Max RPM
3000

Weight 76 Lbs.


US Patent No. 4601378
Static Rated Torque - 1200 Lbs. Ft.
$2.76 \mathrm{Lb} . \mathrm{Ft}^{2}{ }^{2}$
Armature Assy.


| 24 Volt Clutch | 12 Volt Clutch <br> Part No. | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147370 | 1147360 | "C" Splined 1-1/4" 14T 12/24 DP | "C" 2-4 | 1132560 |

## H49D1200HT CLUTCH <br> Mounting Dimensions



Rear View


US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1410 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.
"The Clutch People"
P. O. Box 815968 • Dallas, Texas • 75381-5968 • (U.S.A.)


# H55D1500 CLUTCH <br> Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven 

Power
84 Watts


US Patent No. 4601378
Static Rated Torque - 1500 Lbs. Ft.

| 24 Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1141540 | 1141530 | "D" Splined 1-3/4" 13T 8/16 DP | "D" 2-4 | 1142190 |
| 1147110 | 1147100 | $1-3 / 8 "$ With 3/8" Keyway |  |  |

"The Clutch People"
Made in

## H55D1500 CLUTCH <br> Mounting Dimensions

## Front View




US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1550 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.


# H55D2000HT CLUTCH <br> Hydraulic Pump Drive 12 or 24 Volt D.C. - Shaft Driven 

Power
84 Watts

Max RPM
3000
Weight
118 Lbs.


US Patent No. 4601378
Static Rated Torque - 2000 Lbs. Ft.

Inertia: Rotor Assy
Armature Assy
$2.76{\mathrm{Lb} . \mathrm{Ft.}^{2}}^{2}$
$1.88 \mathrm{Lb} . \mathrm{Ft}^{2}{ }^{2}$

| $\mathbf{2 4}$ Volt Clutch <br> Part No. | 12 Volt Clutch <br> Part No | For Pump <br> Shaft Size | For Pump <br> Mount Style | Pitts Mount <br> Bracket |
| :---: | :---: | :---: | :---: | :---: |
| 1147390 | 1147380 | "D" Splined 1-3/4" 13T 8/16 DP | "D" 2-4 | 1142190 |

"The Clutch People"

# H55D2000HT CLUTCH <br> Mounting Dimensions 

## Front View



US Patent No. 4601378

## Note:

- Drive flange bolt pattern and pilot diameter on clutch are dimensioned to correlate with "Spicer" type 1550 series drive shaft flange connections.
- Proper drive shaft selection is important. Consult with drive shaft manufacturers specifications for each specific application requirements.
- Drive shaft alignment must be within $3^{\circ}$.

